能源模块3-创新设计
核能部分
1 TMSR钍基熔盐核反应堆发电技术
中国TMSR钍基熔盐核反应堆以熔融氟化盐作为燃料载体与冷却剂,核心技术在于钍-铀燃料循环:钍-232在堆内通过中子俘获反应转化为铀-233,进而持续参与裂变反应[2,3]。该反应堆配备在线化学处理系统,能实时分离裂变产物并回收未燃尽燃料,打破传统固态燃料棒"一次性使用"的局限,使燃料在堆内停留时间延长至数千天,从根本上提升燃耗深度[2,4]。
通过优化堆芯中子能谱与钍装载量,可实现"钍-铀转化"与"铀-233裂变"的动态平衡[3]。理论计算表明,每消耗1吨钍可产生约1.05吨铀-233,这种燃料净增殖特性进一步推高燃耗上限,使得单位燃料的能量输出达到传统铀基反应堆的100倍以上,能源密度理论值为100–150 GW·d/tHM[2,5]。其中,钍-铀循环的裂变产物传输安全性已通过多物理输运程序验证,为燃料长期稳定循环提供保障[3]。
2.1 核心供电技术:微型堆+sCO₂循环
TMSR采用的液态氟化盐冷却剂出口温度可达650-700℃,远超传统压水堆的300℃,恰好匹配sCO₂布雷顿循环550-750℃的最佳工作温度,可直接加热sCO₂工质,减少中间换热环节的能量损失,纯发电效率约为50%[6,7]。
2.2 能源调节与储存:耦合高温制氢
利用TMSR输出的高温热/电驱动固体氧化物电解池(SOEC),在700-850℃下将水(H₂O)高效分解为氢气(H₂)和氧气(O₂)[8]。生成的氢气可储存于地下储氢设施或特制容器,在用电高峰时通过燃料电池发电回馈电网,或作为化工原料使用[3,8]。Vesely等(2024)设计的"氢-sCO₂直燃动力系统"显示,该耦合系统可使能源综合利用率提升15%-20%[9]。
2.3 梯级能量回收:跨临界CO₂与氦气涡轮机互补
sCO₂循环发电后,排出的300-400℃中温CO₂进入跨临界CO₂循环,进一步回收余热使效率提升5%-8%;最终200℃左右的低温余热驱动氦气涡轮机,实现"高温→中温→低温"全频段热能利用[10,7]。
3 TMSR余热利用技术
TMSR冷却剂出口温度高、余热资源丰富,可根据温度差异实现多层次场景化利用,为化工产业供能或满足民生需求[11,12]。
3.1 热网供暖应用
方案1:直接热网供暖 从氦气循环冷却器提取120℃热水,通过区域热力管网输送至居民区,末端采用暖气片或地暖,适合甘肃武威示范堆等周边10-20公里范围内城市的集中供暖需求[12,13]。
方案2:热泵+储热系统 将80℃余热储存于熔融盐等相变储热材料,夜间通过热泵将温度提升至90℃供白天使用,解决供暖负荷波动问题,提升系统灵活性[13,4]。
3.2 分温度区间的余热利用
高温余热(≥300-500℃) 直接供给高温工业工艺或驱动高温热机(如燃料合成、热化学循环)[5];在负荷变动时,通过熔盐二次回路与蓄热罐平滑供热,维持汽轮机稳定出力,减少机组频繁启停压力[14,5]。关键部件包括氟化物/硝酸盐熔盐次级回路、耐蚀换热器等[11,14],其中耐蚀换热器的材料选择需参考熔盐腐蚀实验结果——625合金在NaCl-PuCl₃熔盐中,温度超过600℃时腐蚀速率会提升30%以上,需针对性优化材料成分[15]。
中温余热(~150-400℃) 驱动有机朗肯循环(ORC)、Kalina循环,或用于工业热解、气化预热及热化学储能[16]。研究表明,将热交换器布置在热力循环合适位置可最大化exergetic利益与工艺耦合[6,14],关键部件为高效换热器、ORC机组等[6,16]。
低温与低品位余热(<150-200℃) 用于集中供暖、温室农业、低温海水淡化,或通过吸收式热泵、热电薄层(TEG+热管)回收能量[8]。被动热管+热电组件在低速气流/低温差环境下可实现并网外的辅助电力输出,但单模块电力收益有限[12,13]。
3.3 蓄热与调峰集成
在反应堆与用户/循环系统之间并入熔盐储罐或热化学储能系统,过剩热量储存于熔盐罐,需求高峰时释放热量,提升负荷跟踪能力并减少机组热机械冲击[4]。需注意热化学/盐水体系的循环可逆性与颗粒床通道阻塞问题[2,17]。
四 转化效率
直接发电效率接近50%[6,7]
五 能量密度
理论值为100–150 GW·d/tHM[2,5]
参考文献
[1] Yang H, Cheng Q, Zou L, et al. Multiphase species transport modeling of molten salt reactors in system analysis modules: Generation, decay, deposition and extraction of insoluble fission products[J]. Nuclear Technology, 2025, 211(3): 1-12. https://doi.org/10.1080/00295450.2024.2421678
[2] Zhang D L, et al. Fluoride-salt-cooled high-temperature advanced reactor (FuSTAR): An integrated nuclear energy production and conversion system[J]. Energy, 2023, 276: 130048. https://doi.org/10.1016/j.energy.2023.130048
[3] Chen L, et al. Development and validation of a multi-physics transport code for fission products in molten salt reactors[J]. Energies, 2024, 17(21): 5448. https://doi.org/10.3390/en17215448
[4] McFarlane J. From cradle to grave: The importance of fuel cycles to molten salt reactor sustainability[J]. Frontiers in Nuclear Engineering, 2024. https://doi.org/10.3389/fnuen.2024.1335980
[5] Huang D, Li F, Zheng Y. Conceptual design of micro nuclear energy system integrating heat pipe cooled reactor and molten salt heat storage[J]. International Journal of Energy Research, 2025, 49(2): 6804154. https://doi.org/10.1155/er/6804154
[6] Yun S, Zhang D L, Li X, et al. Design, optimization and thermodynamic analysis of SCO₂ Brayton cycle system for FHR[J]. Progress in Nuclear Energy, 2023, 162: 104593. https://doi.org/10.1016/j.pnucene.2023.104593
[7] Lai G Y, Wang T, She D, et al. Conceptual design and feasibility analysis of modular supercritical CO₂ fast reactor core[C]. Proceedings of the 31st International Conference on Nuclear Engineering (ICONE31), 2024. https://doi.org/10.1115/icone31-135206
[8] Pakkebier J, Skangos C, Derby M M. Feasibility of using nuclear microreactor process heat for bioconversion and agricultural processes[J]. Frontiers in Energy Research, 2024. https://doi.org/10.3389/fenrg.2024.1476974
[9] Vesely L, Otto M, Kapat J. H₂-sCO₂ direct fired power system coupled with electrolysis and energy storage[J]. International Journal of Thermofluids, 2024, 21: 100543. https://doi.org/10.1016/j.ijthermofluids.2024.100543
[10] Soytürk G. Design and performance evaluation of a polygeneration system based on transcritical CO₂ Rankine cycle and hydrogen production helium turbine[J]. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2024, 18(2): 1488860. https://doi.org/10.29130/dubited.1488860
[11] Liu X, Huang Y P, Liu M, et al. Coupling analysis of small fluoride-salt-cooled high-temperature reactor with Brayton cycle[J]. Frontiers in Energy Research, 2023, 10: 1097023. https://doi.org/10.3389/fenrg.2022.1097023
[12] International Atomic Energy Agency. Short-term and Promising Long-term Options for Thorium-based Nuclear Energy Deployment[R]. Vienna: IAEA-TECDOC-2009, 2020.
[13] Fachini L V G, et al. Experimental evaluation of a passive waste heat recovery system integrated with thermosyphons and thermoelectric generators for district heating applications[J]. Energies, 2025, 18(19): 5090. https://doi.org/10.3390/en18195090
[14] Xu L, Niu X, Hong W, et al. Comprehensive multi-objective optimization study on thermodynamic performance of supercritical CO₂ Brayton cycle with multi-stage intercooling of main compressor[J]. Energies, 2024, 17(24): 6372. https://doi.org/10.3390/en17246372
[15] Karlsson T Y, et al. Experimental study on corrosion of alloy 625 in NaCl-PuCl₃ molten salt using natural circulation micro-loops[R]. 2024. https://doi.org/10.2172/2481273
[16] Ming J, Zhu J, Ma Y, et al. Dynamic modeling and validation of a 5 MW small modular supercritical CO₂ Brayton cycle reactor system[J]. Energy Conversion and Management, 2022, 251: 114981. https://doi.org/10.1016/j.enconman.2022.114981
[17] Nàfràdi G, et al. Hybrid perovskite photovoltaics for radiation detection and energy conversion in nuclear reactor environments[J]. Solid State Communications, 2020, 311: 113034. https://doi.org/10.1016/j.ssc.2020.113034
2,太阳能
- 水光解制氢:直接利用光催化方式制氢,以氢能作为世界的主要含能体能源,为部分脱离于电网的设施、交通工具以及家用热源提供燃料。
- 通过在大肠杆菌生物被膜上原位聚合聚吡咯,可形成导电性良好的生物-非生物界面。这种共形贴附结构能有效桥接光催化剂与生物组分,实现可见光驱动的全解水反应,产物H₂/O₂比例稳定维持在2:1
- 生物膜相关研究补充
• 论文标题:Living biohybrid systems for solar hydrogen production with self-repairing capability
• 期刊:Nature Energy (2022)
• 作者:Zhang, X., Chen, Y., Wang, L. et al.
• DOI:10.1038/s41560-022-01085-w
• 网址:https://www.nature.com/articles/s41560-022-01085-w
3.水能
分布式小微型发电单元:
◦ 原理: 在多条溪流上安装多个独立的、功率在几千瓦到几十千瓦不等的涡轮发电机。这种“化整为零”的方式进一步增强了系统的抗毁性和隐蔽性。
◦ 优势: 即使一个单元被破坏或溪流干涸,其他单元仍可工作
0 条评论 (登录以进行评论)